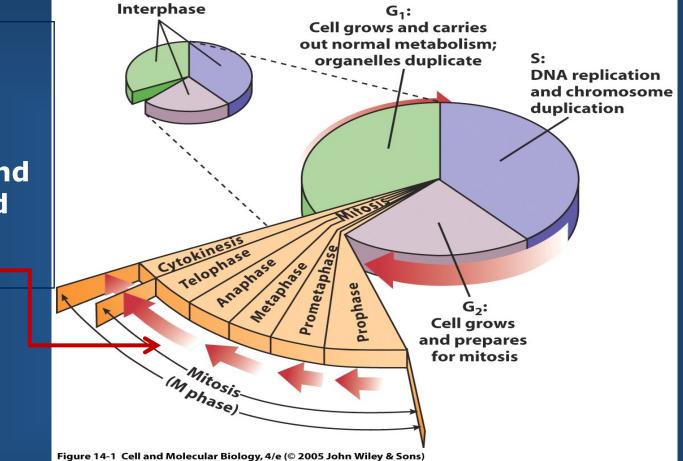
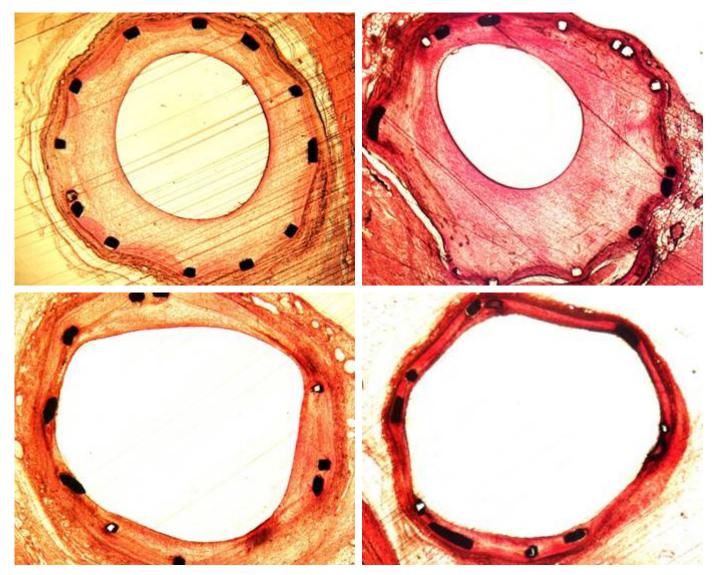
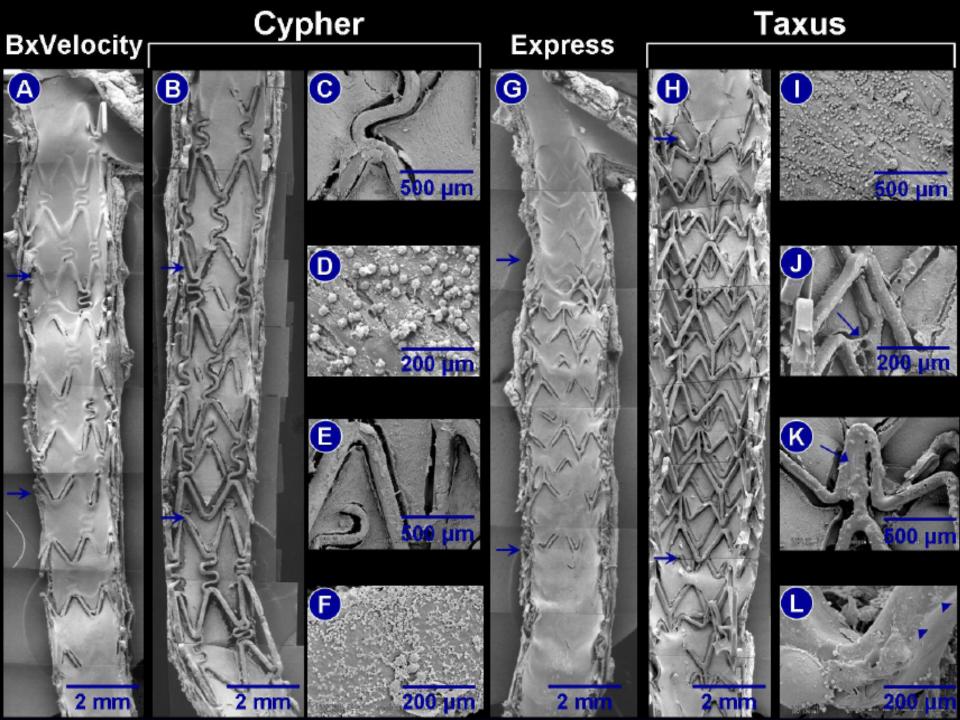
Neues Coating-Konzept beim Drug Eluting Balloon



S.H. Duda


Proven effectiveness of Paclitaxel to prevent restenosis

Paclitaxel blocks transition between metaphase and anaphase and induces cell death


Paclitaxel targets microtubules

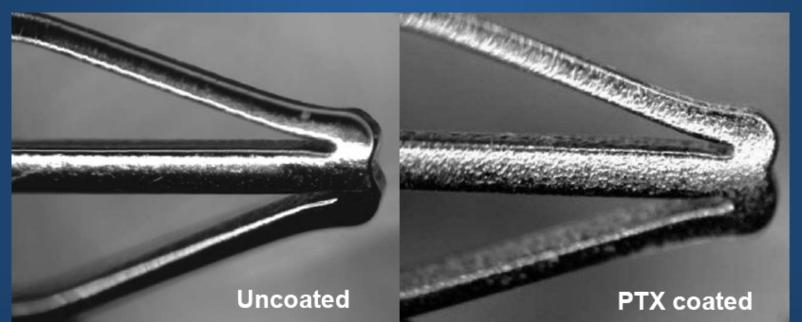
Approach: Paccocath

Coronary arteries of pigs

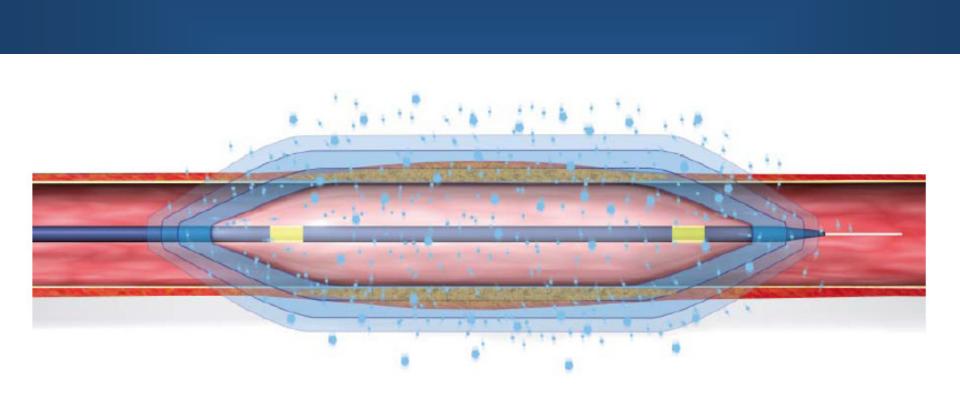
Scheller and Speck et al. Circulation 2004; 110: 810 - 4

DES Issues

Stent Fractures in the SFA Polymer: Adverse Effects Delayed Healing



Zilver[®] PTX[™]


Paclitaxel only

- No polymer or binder
- 3 μg/mm² dose density

• Zilver[®], self-expanding nitinol stent

DEB Concept

Some DCBs Work, others Do NOT

Success:

TLR at 2 years					
Indication	<u>Study</u>	<u>Formulation</u>	<u>DCB</u>	<u>POBA</u>	<u>TAXUS</u>
Coronary ISR	Paccocath ISR I & II ^{1,2}		4%	37%	
	PEPCAD II ^{3*}	Paclitaxel + Iopromide	6%		15%
SFA	THUNDER ⁴		15%	52%	
	FemPac ⁵		13%	50%	

¹Scheller 2006 *NEJM* 355(20):2113-24. ²Scheller 2008 *Clin Res Cardiol 97(10):773-81*. ³Unverdorben 2009 *CIRC 119(23):2986-94*; *TLR at 1 years for PEPCAD II; follow-up ongoing but only 12 month data reported. ⁴Tepe 2008 *NEJM* 358(7):689-99. ⁵Werk 2008 *CIRC* 118:1358-65.

Failure:

TLR at 9 months					
Indication	<u>Study</u>	<u>Study Flaw</u>	<u>DCB</u>	<u>TAXUS</u>	<u>CYPHER</u>
Small Vessel CAD	Piccoleto ^{6*}	Paclitaxel <u>Alone</u>	32%	10%	
		DCB w/ <u>Pre-crimped</u>			
DeNovo CAD	PEPCAD III ⁷	<u>stent</u> vs DES	11%		5%

⁶Cortese 2009 PCR Presentation: Paclitaxel-eluting balloon versus paclitaxel-eluting stent in small coronary vessel disease; *TLR at 6 months for Piccoleto. ⁷Hamm 2009 AHA resentation: Paclitaxel-eluting PTCA-Balloon in Combination with the Coroflex Blue Stent vs the Sirolimus Coated Cypher Stent in the Treatment of Advanced Coronary Artery Disease

Market strategy report

Table 1: Key players active in developing DEB technologies

Company	DCB Name	Drug formulation
Aachen Resonance GmbH (distributed by Biotronik AG in UK, Switzerland, Benelux, Italy and Ireland).	ELUTAX®	Formulated with a matrix of pure Paclitaxel
B. Braun Melsungen AG	SeQuent [®] Please	Paclitaxel with ioporimde formulation (Paccocath® technology)
Bayer AG (MEDRAD, Inc.)	CotavanceTM with Paccocath® coating technology	Paclitaxel with ioporimde formulation (Paccocath® technology)
Caliber Therapeutics, Inc.	TADD (Targeted Angioplasty Drug Delivery)	Rapalog-based with unknown formulation
Cook Group, Inc.	Advance [®] 18PTX [®]	Paclitaxel with unknown additive-based formulation
Eurocor AG	DIOR®	Paclitaxel + Shellac
Invatec s.r.l.	IN.PACT™ Amphirion	Paclitaxel with FreePac™ hydrophilic formulation
Lutonix, Inc.	Unknown	Paclitaxel with unknown formulation

Competition: patents

INVATEC TECHNOLOGY CENTER GMBH [CH/CH]; Hungerbüelstrasse 12 A 8500 Frauenfeld (CH) (A// Except US). SCHELLER, Bruno [DE/DE]; (DE) (US Only). SPECK, Ulrich [DE/DE]; (DE) (US Only).

SCHELLER, Bruno; (DE). SPECK, Ulrich; (DE).

(EN) The present invention relates to novel combinations of balloon catheters and active ingredient preparations adhering to the surface of the balloon membrane. The present invention further relates to coating methods for producing said balloon catheters, and to the use thereof for the treatment and prophylaxis of vascular diseases.

(DE) Die vorliegende Erfindung betrifft neue Kombinationen von Ballonkathetern und an der Oberfläche der Ballonmembran haftenden Wirkstoffzubereitungen. Des weiteren betrifft die vorliegende Erfindung Beschichtungsverfahren zur Herstellung dieser Ballonkatheter sowie deren Verwendung zur Behandlung und Prophylaxe von Gefäßerkrankungen.

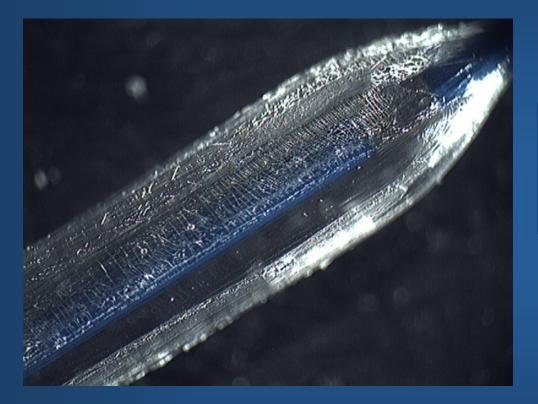
Competition: patents

(WO/2004/028582) MEDICAL DEVICE FOR DISPENSING MEDICAMENTS

Biblio. Data	Description Claims National Phase Notices Documents			
Latest bibliog	raphic data on file with the International Bureau	6		
	WO/2004/028582International Application No.:PCT/DE2003/002871ate:08.04.2004International Filing Date:26.08.2003nand Filed:19.04.200419.04.200419.04.2004			
IPC:	A61L 29/16 (2006.01), A61L 31/16 (2006.01)			
Applicants:	SPECK, Ulrich [DE/DE]; (DE). SCHELLER, Bruno [DE/DE]; (DE) (US Only).			
Inventors:	SPECK, Ulrich; (DE). SCHELLER, Bruno; (DE).			
Agent:	WABLAT, Wolfgang; Potsdamer Chaussee 48, 14129 Berlin (DE).			
Priority Data:	102 44 847.7 20.09.2002 DE			
Title:	(EN) MEDICAL DEVICE FOR DISPENSING MEDICAMENTS (DE) MEDIZINISCHE VORRICHTUNG ZUR ARZNEIMITTELABGABE			

Competition: patents

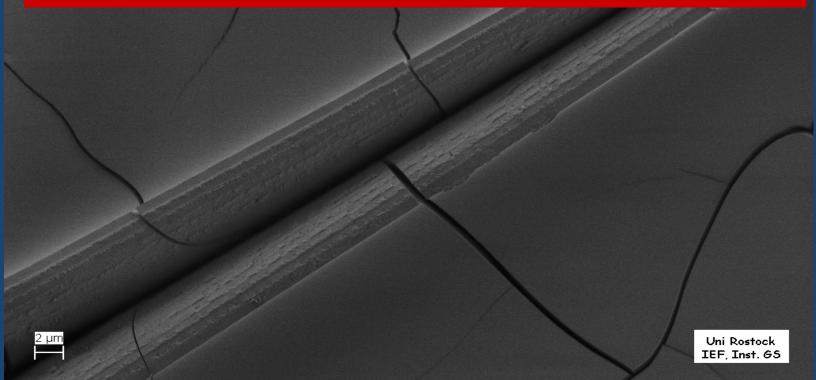
Abstract:


(EN) For selective treatment of diseased tissue sections or organ parts, the surface of medical devices entering into contact with areas thereof under pressure is coated with lipophilic substantially water-insoluble medicaments binding to various tissue components with good adherence thereto, said medicaments having an effect thereupon a short time after entering into contact therewith without exerting a harmful influence upon adjacent healthy tissue.

(DE) Zur selektiven Therapie erkrankter Gewebeabschnitte oder Organteile ist die Oberfläche von diese Bereiche unter Druck kontaktierenden medizinischen Vorrichtungen mit lipophilen, weitgehend wasserunlöslichen und an beliebige Gewebebestandteile bindenden Arzneistoffen guthaftend beschichtet, die an der betreffenden Stelle sofort nach Gewebekontakt in nur kurzer Kontaktzeit und ohne schädigenden Einfluss auf benachbartes gesundes Gewebe ihre Wirkung entfalten.

DEB appearance

SeQuent[®] Please (coated balloon)

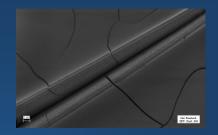

Shellac: non-milky appearance

Compared to competitive products Shellac gives balloon a shiny appearance

Coating surface: non-crystallin

Submicron layer-by-layer coated phase separated paclitaxel-shellac films with cracks

Coating surface: non-crystallin


Low risk of micro-embolism

Uni Rostock IEF, Inst. GS

Production technology

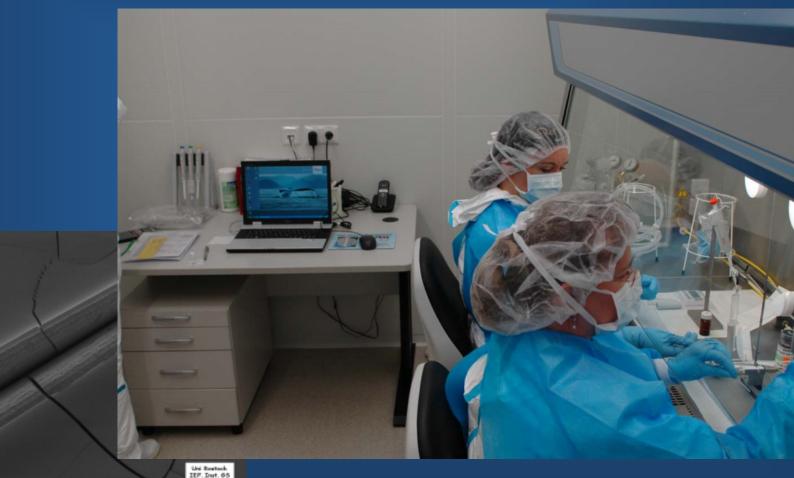
Micropipetting technology

 Micropipetting ensures homogeneous and controllable method of coating

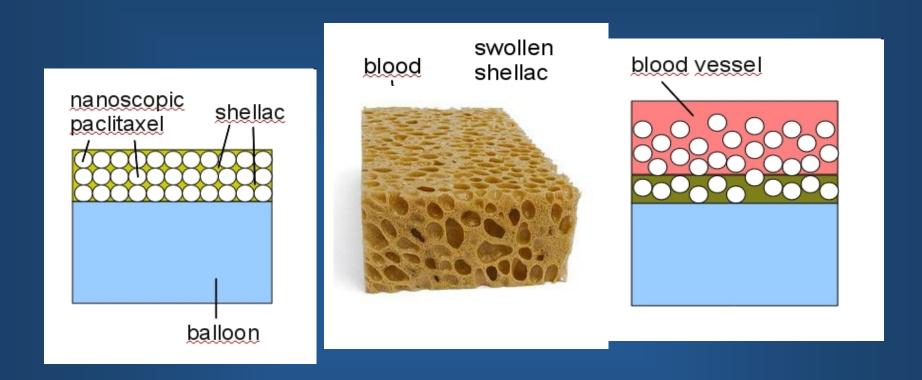
Coating layer by layer

No-thickening by layer coating
 Only 6 µm layer thickness

Production technology


Advantages of the micropipetting technology

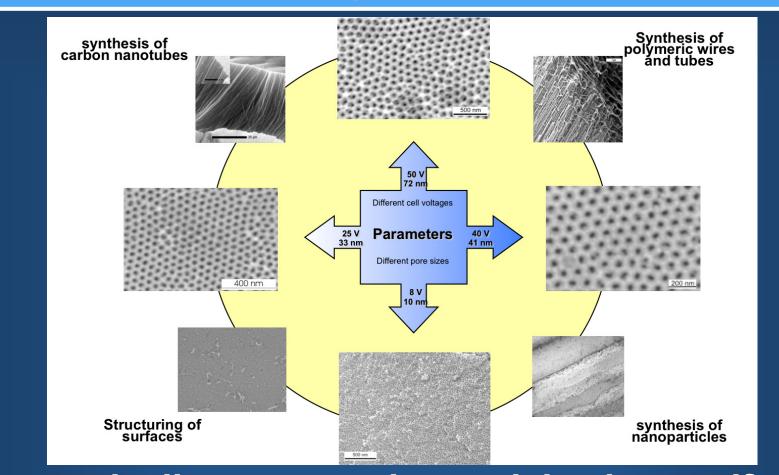
dose control Homogeneous coating over length and diameter Reproducibility of appearance, dosage, homogeneity Balanced adherence and drug transport properties


Requirement	Dose control	Reproducibility	Homogeneity	Effect
Spray coating	Poor	Good	Very good	Mid
Dip coating	Very poor	Poor	Poor	Very low
Micropipetting	Very good	Very good	Very good	High
Micropipetiing	very goou	verygood	very good	nigii

Production technology

Micropipetting allows coating solution to go into pockets under folds

Shellac is not a polymer



coated balloon

in contact with blood

inflation

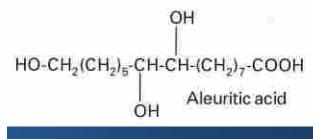
Nanoscopic Paclitaxel

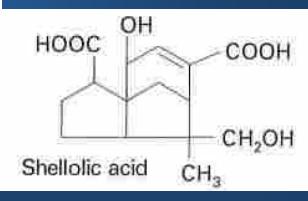
Nanoscopically structured materials show selforganization of single shape persistent molecules into well-defined supramolecular structures

SFB 625, JGU Mainz

- Paclitaxel balloon surface: 3 µg/mm²
- Coating method is a 1:1
 mixture of Paclitaxel (Ph.Eur. 5.0) and Shellac (Ph.Eur. 4.8)
- The Coating is CE marked
- Shellac is well established in Cosmetics, as food coating and Tablet coating.
- Shellac is recognized as safe (GRAS) by the FDA
- Balloon inflation time recommended: 30 – 45 sec. @ nominal balloon pressure

The optical refraction of Shellac gives balloon a shiny appearance


- Shellac: secretion product of Kerria lacca
- "natural plastic"



SSB[®] Pharma is a natural, edible and biodegradable polymer that is produced by refining the resinous secretion (more commonly known as "lac") of an insect (Kerria lacca). This polymer is described in the USP and Ph. Eur. as "shellac".

It is an anionic polymer based on polyesters, and consists of a mixture of polyhydroxy polycarboxylic esters, lactones and anhydrides. Principle components include aleuritic acid, shellolic acid, jalaric acid and other aliphatic acids.

SSB[®] Pharma is thermoplastic, and has a fairly low melting point (75°C-80°C). It is tasteless and odorless. SSB® Pharma SHELLAC for Pharmaceutical Applications

Evaluation of Shellac in case of coating for intravascular intruments –

Test of in vitro-compatibility

Kirsten Peters^{1*}

¹Arbeitsbereich Zellbiologie (*Nachwuchsgruppe), Universität Rostock

Experimental design

• The absence of endothelialization can lead to thrombosis [Van Belle et al., 2007]

 Polymers could be a trigger for an inflammatoric reaction

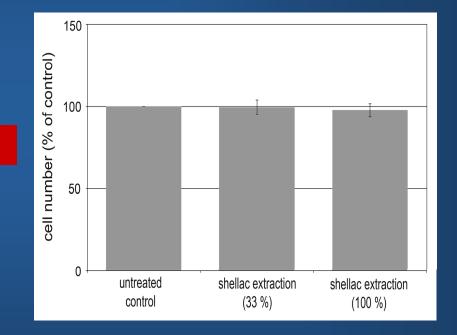
An inflammatoric reaction is responsible for a delayed reendothelialization and could cause destruction of neointima

Experimental design

 Shellac coating was performed by spraying a commercially available shellac suspension on glass and polished titanium alloy discs

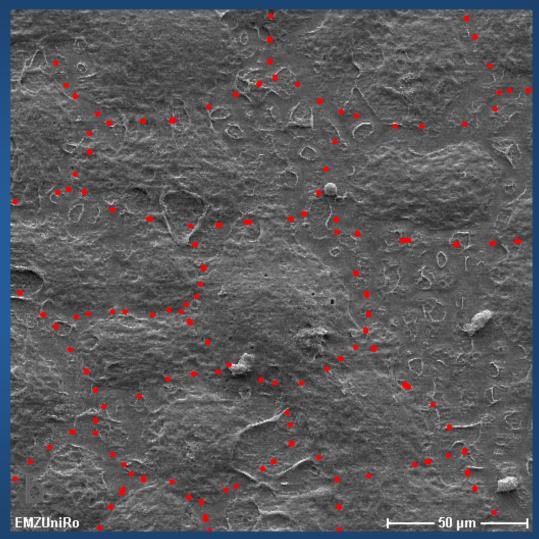
 Investigated cell types: Human dermal EC (HDMEC) and humane smooth muscle cell (HSMC)

 Exposition with extraction product and direct contact


Investigation of metabolic activity

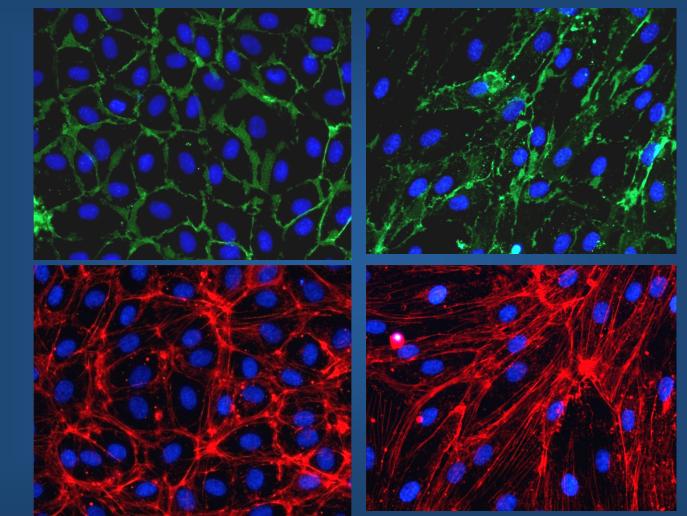
Investigation of pro-inflammatoric response

Evaluation of metabolic activity


Shellac extraction products did not show any impairment of EC and SMC viability, proliferation as well as metabolic activity.

Metabolic cell activity

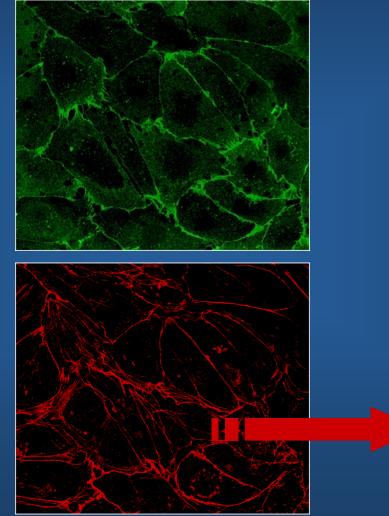
Endothelial cell phenotype in contact to shellac


 Human dermal EC (HDMEC) in vitro in direct contact to shellac coating (scanning electron microscopy)

Interendothelial contacts in vitro

Control

TNF α (300 U/ml, 24 h)



CD31

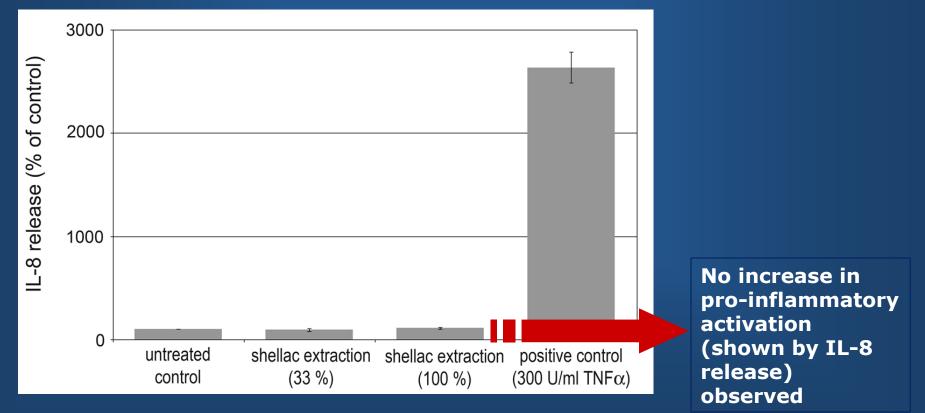
F-Aktin

Interendothelial contacts in vitro

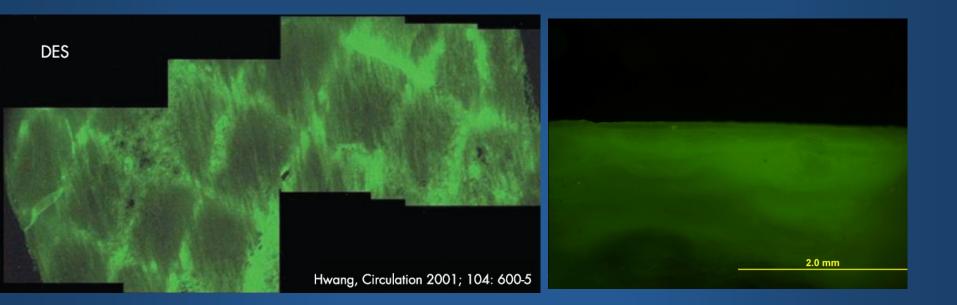
Human dermal EC (HDMEC) *in vitro* after 24 h cell culture supernatants with Shellac extraction products

No sign of activation

CD31

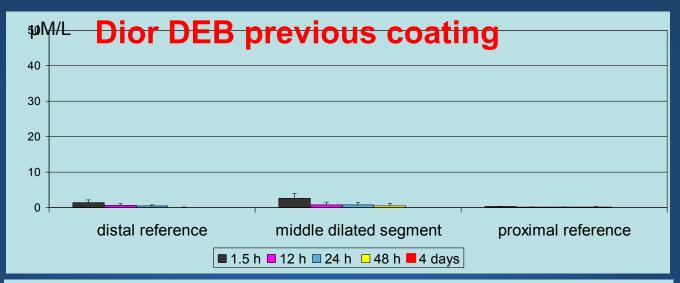

F-

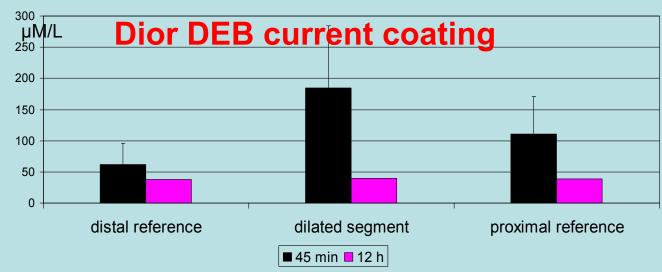
Aktin

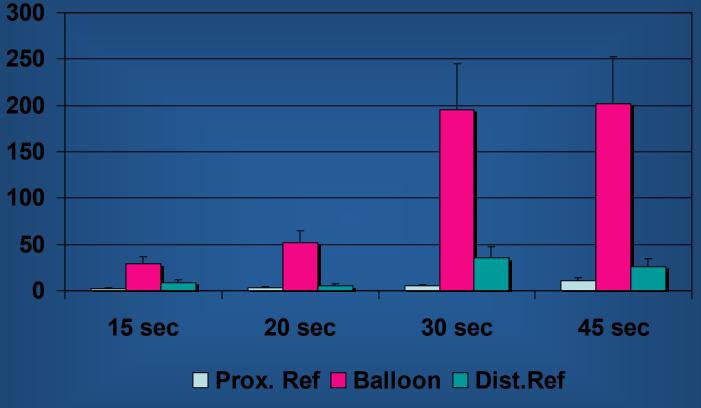

Pro-inflammatory activation?

IL-8-release

- Shellac extraction product (24 h extraction)
- Exposure of confluent Human dermal EC (HDMEC) with extraction product (24 h extraction)
- TNF α as positive control group

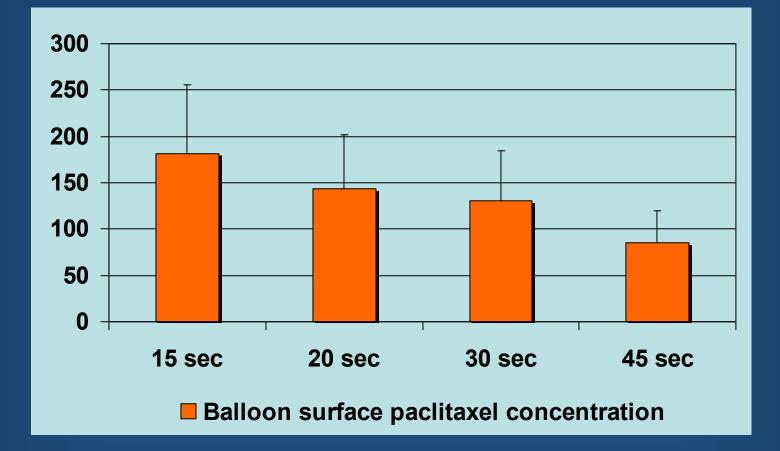


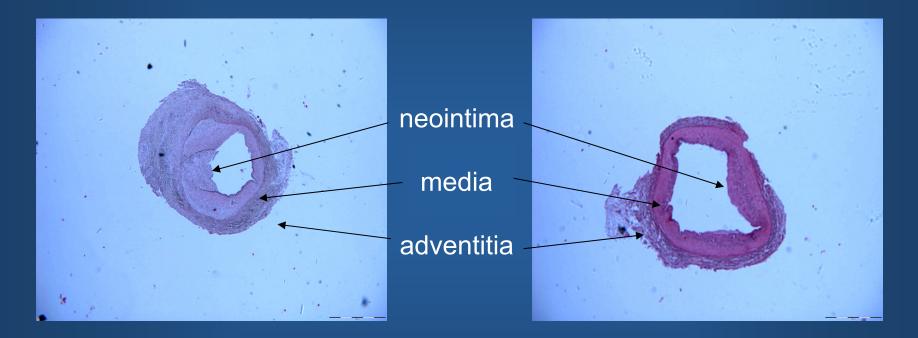

Endothelial surface of porcine coronary arteries after Dior balloon dilation



Artery post-paclitaxeleluting stent: small amount of drug penetrated into the arterial wall, uneven drug distribution Artery post-paclitaxel-eluting Dior balloon: large amount of drug within the arterial wall, uniform drug distribution

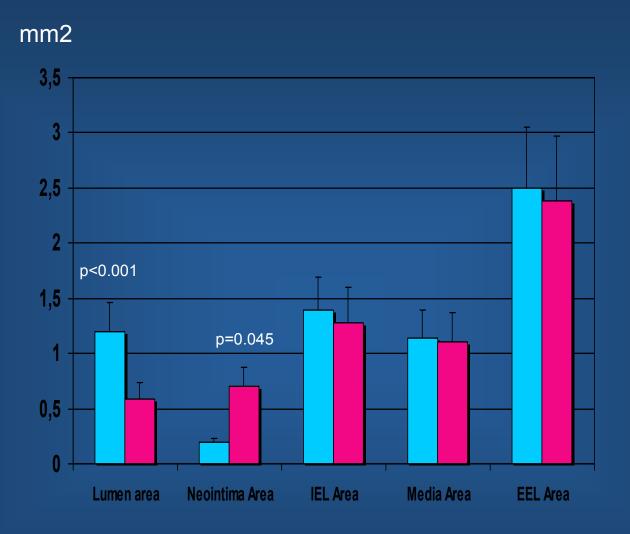
Artery tissue paclitaxel concentration





** Gyöngyösi et al

Inflation time-dependent tissue paclitaxel concentration


Histological results 14 days post-Balloon overstretch injury

Uncoated balloon

Dior balloon

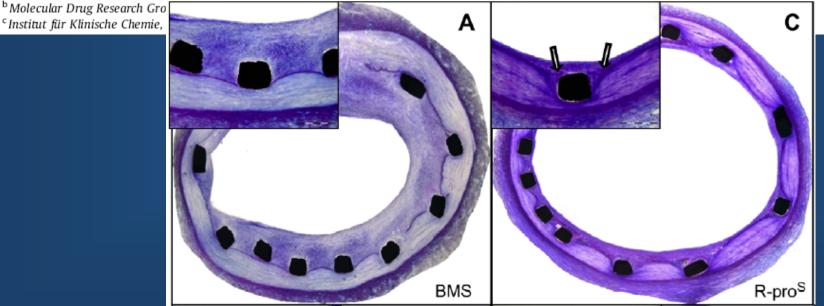
Quantitative histological results N=12*

■ Dior ■ Non-coated balloon

**Gyöngyösi et al

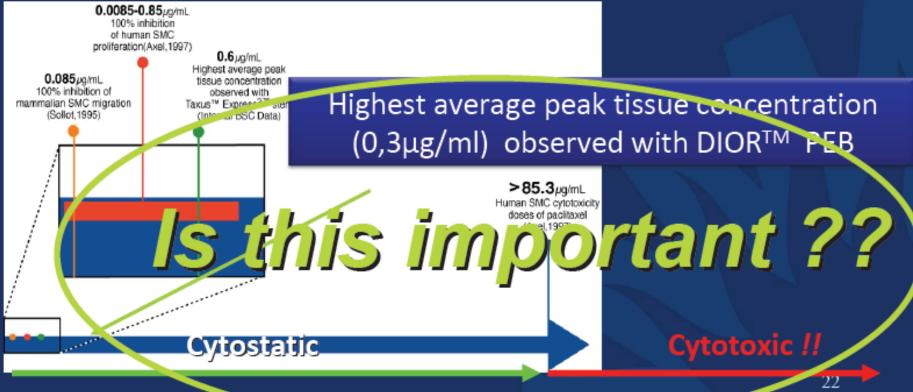
Contents lists available at ScienceDirect

Biomaterials


Biomaterials

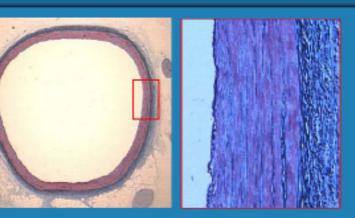
journal homepage: www.elsevier.com/locate/biomaterials

The pre-clinical assessment of rapamycin-eluting, durable polymer-free stent coating concepts


Kristin Steigerwald^{a,1}, Sabine Merl^{a,1}, Adnan Kastrati^a, Anna Wieczorek^a, Marc Vorpahl^a, Raimund Mannhold^b, Michael Vogeser^c, Jörg Hausleiter^a, Michael Joner^a, Albert Schömig^a, Rainer Wessely^{a,*}

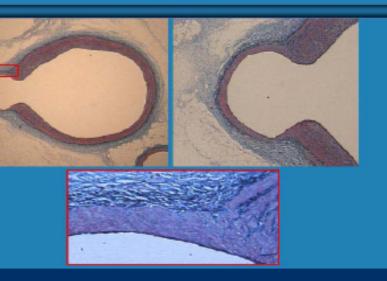
^aDeutsches Herzzentrum and 1 Medizinische Klinik, Klinikum rechts der Isar, Technische Universität, Munich, Germany

- 1. The ideal drug needs to inhibit cell proliferation without killing the cells.
- Paclitaxel has a dose dependant effect associated with a large therapeutic window.



* Axel et al: Circulation. 1097; 96:636-645; Sollot et al; J. Clin.Invest. 1995, 95: 1869-1876;

Restenosis Inhibition - Therapeutic Window


4X

Normal Coronary Artery in Pigs

Coronary Aneurisms After Paclitaxel – Coated Balloon in Pigs 4 wks. Coronary Aneurisms After Paclitaxel – Coated Balloon in Pigs 4 wks.

10X

Coronary Aneurisms After Paclitaxel – Coated Balloon in Pigs Aneurisms in High Dose PEB Group

By Dr. Echevarri – Solaci 2008 Cancur

24

DEB – Randomized Clinical Trials

- Peripheral artery disease
 - THUNDER (SFA)
 - FemPac (SFA)
 - Piccolo (ongoing) (BTK)
 - CopaCobana (SFA in-Stent)
 - River (SFA-US)
 - Euro-Canal and US-Canal

/ uncoated balloon
/ uncoated balloon
/ uncoated balloon
/uncoated balloon
/ uncoated balloon

'Non-PACCOCATH' – randomized clinical trials for PVD

- Advance 18 (POBA vs. DCB): Cook, 100/100 patients randomized
- Levant I (POBA vs. DCB): Lutonix, 100/100 patients randomized (Levant II planned)
- In.pact SFA: Invatec Euro/US Study start QIII/2010
- In.pact Deep: Invatec BTK vs. POBA
- EuroCor: 2 studies in SFA
- further studies with other DCB and other drugs in the near future

FREEWAY STENT STUDY

Stent angioplasty with Paclitaxel-coated balloons versus plain stent angioplasty for prevention of restenosis due to intimal hyperplasia in peripheral arterial occlusive disease

Principal Investigator:

Prof. Dr. med. Josef Tacke Institut für diagnostische und interventionelle Radiologie und Neuroradiologie

Klinikum Passau

Innstr. 76

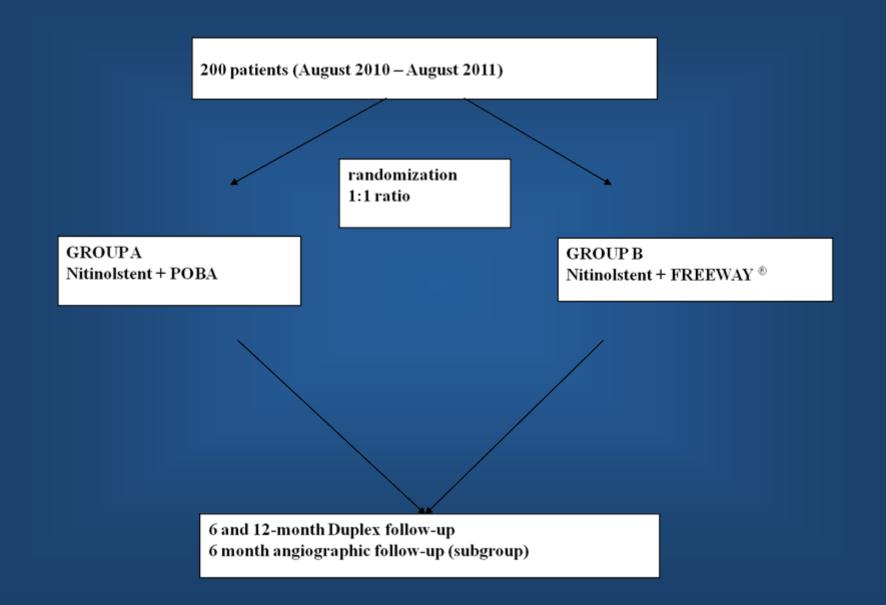
94032 Passau

Germany josef.tacke@klinikum-passau.de

Objective and study design

Comparison of Paclitaxel-Coated Balloon (FREEWAY) with POBA in case of postdilation of Nitinol stents in the treatment of superficial femoral (SFA) or popliteal arteries (P I segment).

Prospective, randomized, multi-center, two-armed phase-III study conducted in Austria and Germany.


200 patients

Design: POBA versus FREEWAY[®]

Primary endpoint:

•Rate of clinically driven target lesion revascularization at 6 months *

Flowchart

FREERIDE STUDY

Prospective, Randomized, Controlled, Multicentre, Open Study Release of Paclitaxel during PTA versus PTA alone for the treatment of de-novo occluded, stenotic or, reoccluded, restenotic superficial femoral (SFA) or popliteal arteries

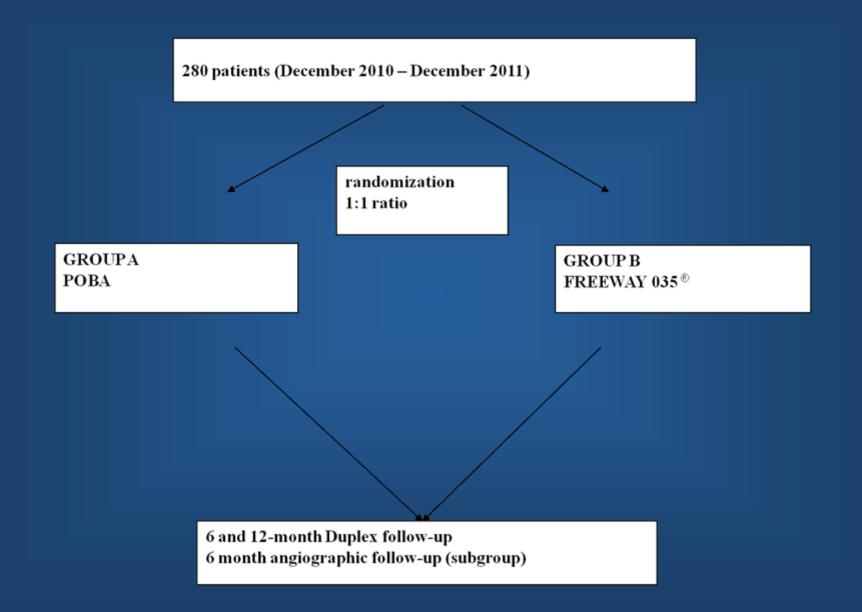
Principal Investigator:

Prof. Dr. med. Karl-Ludwig Schulte Vascular Center Berlin /Dept. Internal Medicine Ev. Hospital Königin Elisabeth Herzberge Academic. Teaching Hospital of the Charité Herzbergstraße 79, 10365 Berlin, Germany

Objective and study design

Comparison of Paclitaxel-Coated Balloon (FREEWAY) with POBA in the treatment of de-novo occluded, stenotic or, reoccluded, restenotic superficial femoral (SFA) or popliteal arteries.

Prospective, randomized, multi-center, two-armed phase-III study conducted mainly in Europe.


280 patients

Design: POBA versus FREEWAY 035[®]

Primary endpoint:

•Rate of clinically driven target lesion revascularization (TLR) at 6 months *

Flowchart

Conclusion on DEB Technology for PVD

Two independent trials showed efficacy of paclitaxel balloons

BUT

Enthusiasm based on 100 patients (Thunder, FemPac)
 We have to learn about limitations (e.g. with stents, dose effect, calcification)
 Europe: more than 5 different DEBs under development + available:

despite the same drug: some will work other will not!